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A B S T R A C T

Wetlands are essential for global biogeochemical cycles and ecosystem services, with the
dynamics of soil organic carbon (SOC) serving as the critical regulatory mechanism for these
processes. However, accurately modeling carbon dynamics in wetlands presents challenges due
to their complexity. Traditional approaches often fail to capture spatial variations, long-range
transport, and periodical flooding dynamics, leading to uncertainties in carbon flux predictions.
To tackle these challenges, we introduce a novel extension of the fractional RothC model,
integrating temporal fractional-order derivatives into spatial dimensions. This enhancement
allows for the creation of a more adaptive tool for analyzing SOC dynamics. Our differential
model incorporates Richardson–Richard’s equation for moisture fluxes, a diffusion–advection–
reaction equation for fractional-order dynamics of SOC compounds, and a temperature transport
equation. We examine the influence of diffusive movement and sediment moisture content on
model solutions, as well as the impact of including advection terms. Finally, we validated the
model on a restored wetland scenario at the Ebro Delta site, aiming to evaluate the effectiveness
of flooding strategies in enhancing carbon sequestration and ecosystem resilience.

1. Introduction

Wetlands, characterized by their dynamic hydrological regimes and diverse vegetation, have significant influence on global
biogeochemical cycles and ecosystem service provision. Central to the functioning of wetlands are the interconnections among
biotic and abiotic factors, with soil carbon dynamics serving as a cornerstone in regulating ecosystem processes and preserving their
ecological services. In contrast to upland forests and rangelands, wetlands undergo extended periods of sediment oxygen depletion,
leading to specialized adaptations in vegetation for anaerobic conditions. Despite these conditions, wetlands also experience periods
of sediment aeration and unsaturation, resulting in a diverse range of valuable ecosystem services [1].

Wetlands are vital hubs for a range of ecosystem services falling within the four categories delineated by the Millennium
Ecosystem Assessment [2], covering provisioning, regulating, cultural, and supporting services. The majority of these services are
closely tied to the water cycle and wield significant economic influence on both local and global scales. The economic significance of
wetlands extends beyond the tangible products they offer, e.g. fresh water, food, timber, and pharmaceuticals [3]. Their regulatory
services, not only contribute to mitigate natural hazards, but also actively bolster circular economy strategies, e.g by exploiting water
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purification. Additionally, well preserved wetlands supports other ecosystems with even higher monetary value. All in all, a recent
estimate suggests that the services rendered by wetlands are monetarily valued at approximately Int$47 trillion annually [4]. Due
o the aforementioned factors, allocating funds towards coastal management and restoration can yield substantial economic benefits
n the long run, surpassing the initial expenses incurred for preservation. The imperative for restoration grows as the degradation
nd loss of coastal wetlands outpace that of other ecosystems, significantly diminishing the provision of ecosystem services. One

of the adverse consequences of degradation is its influence on the carbon cycle, potentially reducing the carbon storage ability of
etlands or even transforming them from natural carbon sinks into sources.

Understanding the sediment carbon cycle in wetlands is essential for addressing broader environmental issues, particularly in
the context of climate change mitigation and adaptation. Wetlands are among the most effective natural carbon sinks, sequestering
atmospheric carbon dioxide through the accumulation of organic matter in anaerobic sediment conditions. Nonetheless, in some
cases, the release of potent greenhouse gases like methane can counteract their climate mitigation potential. The complexity of
wetland ecosystems poses challenges for accurately modeling carbon dynamics, hindering our ability to predict ecosystem responses
to environmental changes and inform effective management strategies [5]. It is thus essential to clarify the distinction between
arious types of wetlands, including floodplains, peatlands, etc, each of which has unique characteristics and is often modeled
ith dedicated approaches tailored to its specific dynamics. The hydrodynamic regime characteristic of coastal wetlands differs

ignificantly from that of peatlands, motivating the need for a specialized model tailored to the unique conditions present in coastal
egions. Our study specifically focuses on coastal wetlands where tidal influence plays a significant role, creating environmental
nd hydrological conditions that are markedly different from those found in internal freshwater wetlands or peatlands, where tidal
mpacts are not present. Thus, peatland models, while also addressing carbon storage functions, are not directly transferable to our
tudy’s context. In particular, the peatland models in [6,7] describe specific processes such as the influence of peat formation on

poroelastic properties of soil. These processes are peculiar for peatlands but not for wetlands in general.
Simplistic modeling approaches often fall short in capturing the hydro-physical properties and non-linear dynamics inherent

in wetland sediments [8]. Many wetland nutrient cycling models employ a simplified internal mass balance equation to simulate
groundwater levels based solely on precipitation and evapotranspiration losses [9]. This approach often results in a representation

here wetlands are primarily influenced from above, neglecting the significant impact of groundwater vertical movements,
haracteristic of wetland environments. Another aspect that requires special consideration is the seasonal pattern of water level
n wetlands and the rise and fall of wetland surface and subsurface water. Traditional models able to describe variably-saturated
etland conditions by tracking moisture in wetland sediment [10] overlook processes such as long-range transport, spatial variations

in sediment properties and periodical flooding, leading to uncertainties in carbon and methane flux predictions and, consequently,
in ecosystem assessments. Finally, no existing model adequately captures the memory effects on SOC dynamics, which may arise
from processes that are not explicitly modeled, such as mass exchange between substances in dissolved and solid states.

To address these limitations, there is a growing need for modeling techniques that can capture the complexities of wetland
ecosystems and provide robust predictions of carbon cycling dynamics. Integrated models such as those developed in [11] focus
n carbon dynamics and methane emissions driven by hydrology, sediment biogeochemistry, and vegetation processes. Models

like Estimation of Carbon in Organic Soils—Sequestration and Emissions (ECOSSE) [12] predict the impact of land-use and climate
change on greenhouse gas emissions, incorporating sediment carbon and nitrogen turnover processes. The Peatland Carbon Simulator
PCARS) [13] simulates the carbon balance in peatlands, incorporating components such as plant photosynthesis, decomposition,

methane production, and loss of dissolved organic carbon with drainage water. As wetlands exhibit distinct redox gradients, with
anaerobic conditions prevailing in deeper layers and influencing microbial processes and methane production, vertical layer models
for SOC dynamics are crucial for understanding the complex interplay of hydrological and ecological factors across different sediment
depths.

In this paper, we introduce a novel extension of the original RothC model (12) incorporating temporal fractional-order derivatives
into a spatially-extended domain, to enhance the accuracy of wetland modeling. By extending the fractional version of this model
ntroduced in [14] to incorporate spatial dimensions, we aim to generalize some spatially explicit RothC approaches found in the

literature [12,15–17] and offer a more comprehensive understanding of sediment carbon dynamics in the specific case of coastal
etlands [18]. In particular, we investigate the impact of vertical layers in modeling carbon decomposition dynamics within the

ubstrate, emphasizing the interplay between hydrological and biological factors across varying sediment depths, with a particular
ocus on microbial processes and methane production over carbon dioxide.

We develop a differential model that relies on several key components. First, we utilize the Richardson–Richards equation (RRE)
to simulate moisture fluxes [19,20]. Then, we integrate a diffusion–advection–reaction equation for simulating the fractional order
dynamics of SOC compounds within a vertical layer. This is coupled with a decomposition rate modifier delineating the transition
from aerobic bacterial activity generating CO2 to anaerobic bacterial activity producing CH4 in water-saturated sediments. Lastly,
we incorporate a temperature transport equation influencing the dynamics at varying depths. Additionally, we introduce specific
boundary conditions to simulate periodic flooding. Our model allows to examine how diffusive movement and transport due to
sediment moisture fluxes influence the solutions of sediment organic carbon compound equations in the substrate. By comparing
olutions with and without advection, we aim to elucidate the role of the new features introduced here in order to understand how
dvection influences SOC dynamics in wetland ecosystems. Furthermore, we assess the plausibility of modeling wetland restoration
cenarios using our novel model. By simulating flooding scenarios and comparing model outcomes with empirical data, we aim to
valuate the effectiveness of restoration strategies in enhancing carbon sequestration.

The paper is organized as follows. In Section 2, we introduce the RRE formulation for saturated–unsaturated sediments and
stablish specific boundary conditions to model water level fluctuations in coastal wetlands, complemented by meteorological
370
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inputs. Section 3 extends the fractional RothC model vertically across the sediment column, integrating constant diffusion and
dvection driven by water infiltration velocity, the latter derived from RRE. Moving to Section 4, we develop formulations for

carbon dioxide (CO2) and methane (CH4) emissions, which are related to aerobic or anaerobic bacterial respiration. In Section 5,
we provide simulations, exploring the impacts of periodic flooding and sediment moisture fluxes on carbon stocks and greenhouse
gas emissions, particularly in the Ebro Delta wetland restoration context. Finally, we wrap up with a discussion, concluding remarks,
and future research avenues. Appendices include details on the numerical scheme and computational issues (Appendix A) and the
numerical evaluation of greenhouse gas fluxes (Appendix B).

2. Soil moisture fluxes and periodical flooding in wetlands

The modeling of water infiltration in sediment is based on the Richardson–Richards equation [19,21,22], which is an advection–
iffusion equation derived by conservation of mass that extends Darcy’s law for saturated flow in porous media. Our emphasis is
n the vertical dimension in infiltration, predominantly influenced by gravity.

We introduce the water head pressure function ℎ(𝑧, 𝑡), representing the potential energy of water in the sediment measured as
he height of the water column above the depth level 𝑧 at time 𝑡. When ℎ(𝑧, 𝑡) = 0, the level 𝑧 aligns with the water table position
t time 𝑡, marking the boundary between saturated and unsaturated sediment zones. Positive values of ℎ indicate points below the
ater table, corresponding to the saturated zone where all sediment pores are filled with water. Conversely, negative values of ℎ

ndicate points above the water table, corresponding to the unsaturated zone where both air and water coexist in the sediment
ores.

There are two reasons that motivated the use of an unsaturated/saturated flow equation: one is that we wanted to address the
carbon sequestration in wetlands whose state is changed from agricultural usage to a reclaimed state. In this case, and also under
the influence of climate changes, soil layers next to the surface can become non-saturated (or are forced to become non-saturated
for the needs of farming) even in wetlands. Analogously, in the case of a paddy rice field—a form of agricultural practice in which
surface flooding is applied along with the natural flooding processes—the approach followed here allows us to capture the variable
saturation conditions. These dynamics are essential for representing the water movement and soil moisture interactions within
these systems, where fully saturated models would not effectively capture the fluctuations between different saturation states. For
saturated/unsaturated sediments, the one-dimensional Richards equation, known as Richardson–Richards equation (RRE), when
expressed in relation to the water head pressure ℎ(𝑧, 𝑡) [L], has the following expression, as outlined in [23]:

(

𝐶(ℎ) + 𝑆𝑒(ℎ)𝑆𝑠
) 𝜕 ℎ
𝜕 𝑡 = 𝜕

𝜕 𝑧
(

𝐾(ℎ)
( 𝜕 ℎ
𝜕 𝑧 − 1

))

. (1)

In this equation, 𝑡 [T] is the time, 𝑧 [L] is the spatial coordinate (positive downwards), and 𝐾(ℎ) [L T−1] denotes the hydraulic
conductivity function. The dimensionless function 𝑆𝑒(ℎ) represents the effective saturation and 𝑆𝑠 [L−1] is the specific storage value.
The function 𝐶(ℎ) [L−1] represents the specific moisture capacity and is defined as the spatial derivative of the water retention curve
𝜃(ℎ) [–]. The term 𝑣(𝑧, 𝑡) [L T−1] is defined as

𝑣(𝑧, 𝑡) = 𝐾(ℎ)
( 𝜕 ℎ
𝜕 𝑧 − 1

)

(2)

and it measures the vertical water flux according to the Darcy’s law.
The function 𝑆𝑒(ℎ) exhibits two distinct types of behavior based on the pressure head, depending on whether the porous media

is saturated or not, as in [24]:

𝑆𝑒(ℎ) =
{

(

1 + (− 𝑎 ℎ)𝑛)−𝑚 , 𝑖𝑓 ℎ < 0
1, 𝑖𝑓 ℎ ≥ 0

where 𝑚 = 1 − 1
𝑛 . The functional dependencies of 𝜃(ℎ) and 𝐾(ℎ) on ℎ are handled using the van Genuchten–Mualem functions and

the related empirical parameters 𝑎 > 0 [L−1 ] and 𝑛 > 0, for unsaturated conditions [25,26]. The expression of the water retention
urve (or volumetric moisture content) is given by

𝜃(ℎ) = 𝜃𝑟 + (𝜃𝑠 − 𝜃𝑟)𝑆𝑒(ℎ) (3)

where 𝜃𝑟 is the residual moisture content, 𝜃𝑠 is the saturated moisture content. Consequently,

𝐶(ℎ) = 𝑑 𝜃
𝑑 ℎ = 𝑎 𝑚

1 − 𝑚 (𝜃𝑠 − 𝜃𝑟)𝑆
1∕𝑚
𝑒 (ℎ)

(

1 − 𝑆1∕𝑚
𝑒 (ℎ)

)𝑚
.

Finally, the hydraulic conductivity is defined as

𝐾(ℎ) = 𝐾𝑠 𝑆
𝜂
𝑒 (ℎ)

(

1 −
(

1 − 𝑆1∕𝑚
𝑒 (ℎ)

)𝑚)2
(4)

where 𝐾𝑠 [L T−1] is the filtration coefficient (hydraulic conductivity at the saturated state) and 𝜂 is another empirical parameter.
In the saturated sediment zone, when ℎ ≥ 0, it holds that 𝑆𝑒(ℎ) = 1 and 𝜃(ℎ) = 𝜃𝑠. As a consequence, 𝐶(ℎ) drops to zero and 𝐾(ℎ)

aintains the constant value 𝐾𝑠. This leads to the following simplification of Eq. (1) under saturated conditions:

𝑆𝑠
𝜕 ℎ
𝜕 𝑡 = 𝜕

𝜕 𝑧
(

𝐾𝑠
( 𝜕 ℎ
𝜕 𝑧 − 1

))

. (5)
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2.1. Boundary conditions

On the upper boundary, at 𝑧 = 0, Eq. (1) is subject to the following condition:

𝑞(𝑡) = −𝐾(ℎ(0, 𝑡))
( 𝜕 ℎ
𝜕 𝑧 (0, 𝑡) − 1

)

= 𝑃 (𝑡) − 𝐸(𝑡). (6)

Here, 𝐸(𝑡) [L T−1] represents evapotranspiration, which is considered to influence only the upper boundary layer of the sediment
hen it is not submerged, neglecting the portion of moisture removed from the sediment by plants and their root systems, while
(𝑡) [L T−1] denotes precipitation.

We consider time-variant boundary conditions at the lower boundary 𝑧 = 𝑙 of the simulation domain by setting the water head
pressure ℎ(𝑙 , 𝑡) to be equal to 𝑙 − 𝑙𝑒(𝑡), where 𝑙𝑒(𝑡) is the water level in an external source (sea, river, or lake) of groundwater in the
sediment column [27]:

ℎ(𝑙 , 𝑡) = 𝑙 − 𝑙𝑒(𝑡). (7)

Further, for the condition (6) we set 𝑞(𝑡) = 0 when 𝑙𝑒(𝑡) ≤ 0. Such condition follows from the assumption that for coastal wetlands,
which are the main subject of this study, the influence of evapotranspiration and precipitation on the level of water above the
sediment surface can be considered negligible.

Using this approach, and following [24], we assume a unidirectional influence of external surface water sources on groundwater
evels. In our model, the value of 𝑙𝑒(𝑡) is an external input and should be determined through measurements or additional modeling
f flooding processes. By setting the external water source level as 𝑙𝑒(𝑡), we assume that the transitional processes of surface water
nfluence on the water table occur within a negligible time frame.

Well-posedness of Eq. (1) with boundary conditions (6) and (7) is a broadly studied topic about parabolic partial differential
equations; however, the mixed Dirichlet-Neumann boundary conditions and the regularity of 𝐶(ℎ) +𝑆𝑒(ℎ)𝑆𝑠, multiplying the partial
temporal derivative on the left-hand side of (1), make the problem delicate, both for extending it to higher dimensions, and because
the problem itself changes nature when the saturated zone is reached.

To infer existence and uniqueness of (1) with the boundary conditions (6) and (7), one could resort to regularization
techniques [28], or frame the problem using functional analysis tools [29]. In both cases, obtaining stronger regularity for the
solution could be an issue, and further results with different techniques could be found in [30]; moreover, we refer to [31] for
considerations on mixed boundary conditions and regularity thereof.

2.2. Steady-state solution

By denoting with 𝑞 a constant vertical water flux and 𝑙𝑒 a constant elevation of the water level in the external source, the
downward water flux ℎ(𝑧) solves the steady-state state RRE:

𝑑
𝑑 𝑧

(

𝐾(ℎ)
(

𝑑ℎ
𝑑 𝑧 − 1

))

= 0, 𝑧 ∈ [0, 𝑙] (8)

subject to the boundary conditions

−𝐾(ℎ(0))
(

𝑑ℎ
𝑑 𝑧 (0) − 1

)

= 𝑞 , ℎ(𝑙) = 𝑙 − 𝑙𝑒. (9)

Then, the flux along the column remains constant at the value of 𝑞:

−𝐾(ℎ(𝑧))
(

𝑑ℎ
𝑑 𝑧 (𝑧) − 1

)

= 𝑞 , 𝑧 ∈ [0, 𝑙]. (10)

and the steady-state solution satisfies the following final value problem:
𝑑ℎ
𝑑 𝑧 = 1 − 𝑞

𝐾(ℎ)
, 𝑧 ∈ [0, 𝑙]

ℎ(𝑙) = 𝑙 − 𝑙𝑒.
(11)

We will utilize the steady-state solution in our simulations to estimate the initial distribution of the water head ℎ0(𝑧) for RRE (1).

3. In-depth fractional RothC model

The RothC model, originally developed to simulate soil organic carbon dynamics within agricultural systems [32,33], offers a
obust framework for understanding carbon cycling processes across various contexts [34–36] and scales [37]. Moreover, it has been
ffectively integrated into broader land surface models [16]. This model categorizes soil organic carbon (SOC) dynamics into four

active compartments, representing distinct stages of organic matter decomposition and cycling: decomposable plant material (DPM),
372
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resistant plant material (RPM), microbial biomass (BIO), humus (HUM). Following the notation in [34], the classical RothC model
an be represented as:

𝑑𝐜
𝑑 𝑡 = 𝜌(𝑡)𝐴 𝐜 + 𝐛(𝑡), 𝐴 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−𝑘dpm 0 0 0

0 −𝑘dpm 0 0

𝛼 𝑘dpm 𝛼 𝑘rpm (𝛼 − 1)𝑘bio 𝛼 𝑘hum

𝛽 𝑘dpm 𝛽 𝑘rpm 𝛽 𝑘bio (𝛽 − 1)𝑘hum

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(12)

where 𝐜(𝑡) = [𝑐dpm(𝑡), 𝑐rpm(𝑡), 𝑐bio(𝑡), 𝑐hum(𝑡)]⊤ is a vector containing the concentrations of the different carbon pools at time 𝑡, and
𝐛(𝑡) = [𝛾 , 1 − 𝛾 , 0, 0]⊤𝑔(𝑡) is a vector representing the allocation of litter input 𝑔(𝑡) between DPM and RPM pools. This partition is
ased on the coefficient 𝛾 satisfying the relation 𝛾

1−𝛾 = 𝑟, where the DPM/RPM ratio 𝑟 provides an estimate of the decomposability

of the incoming plant material. The matrix 𝐴 describes the interactions and transformations between the carbon pools, governed by
the decomposition rate constants 𝑘dpm, 𝑘rpm, 𝑘bio, and 𝑘hum. Parameters 𝛼 and 𝛽 represent the proportion of carbon incorporated
into the BIO and HUM compartments, which is determined by the percent of clay content of the sediment (clay), according to [32]

𝛼 = 0.46
𝑥 + 1 , 𝛽 = 0.54

𝑥 + 1 , 𝑥 = 1.67 (1.85 + 1.60 𝑒−0.0796 clay).

The residual fraction 1 − (𝛼 + 𝛽) is released into the atmosphere as CO2. Finally, the rate modifier 𝜌(𝑡) depends on temperature,
moisture and soil cover [32].

The vertical representation of the RothC model, introduced in [15], accounts for the distribution of carbon across multiple
vertical layers. It includes vertical mixing (diffusion) and transport due to water movement, allowing for a more detailed and
accurate representation of decomposition processes and carbon transfer within the soil. The model with vertical mixing, excluding
the transport term, was further analyzed in [16] and integrated into the Joint UK Land-Environment Simulator (JULES), with a
specific focus on permafrost regions.

In the following, we first introduce the vertical representation of the RothC model, incorporating an advection term, under the
assumption that the transport of SOC along the sediment column follows the same movement as water infiltration. Secondly, we
generalize the model employing fractional calculus to offer enhanced modeling capabilities for SOC in wetland ecosystems.

3.1. In-depth integer-order RothC model

Vertical layers in wetlands play a crucial role in organic carbon dynamics in the sediment substrate due to unique ecological
and hydrological conditions. Distinct redox gradients create anaerobic conditions in deeper layers, influencing microbial activity and
decomposition processes. The water-saturated environment, along with varying root activities, leads to differential SOC accumulation
and decomposition rates across vertical layers. Temperature gradients, water table fluctuations, and nutrient dynamics at different
sediment depths contribute to the complex factors influencing SOC dynamics in wetlands. Recognizing the vertical dimension is
essential for accurate assessments of carbon stocks, greenhouse gas emissions, and effective wetland conservation and management,
especially in the context of climate change and evolving land-use patterns.

Assuming that the SOC concentrations vector 𝐜(𝑧, 𝑡), [M L−3], is a function of both time and depth, the model for the SOC
dynamics is represented by the following partial differential system:

𝜕𝐜
𝜕 𝑡 = 𝜕

𝜕 𝑧
(

𝐷 𝜕𝐜
𝜕 𝑧 − 𝑣(𝑧, 𝑡) 𝐜

)

+ 𝜌(𝑧, 𝑡)𝐴 𝐜 + 𝐛𝑑 (𝑧, 𝑡), 𝑧 ∈ [0, 𝑙], 𝑡 ≥ 𝑡0. (13)

The diffusivity term in (13) is influenced by the diagonal matrix 𝐷, where each diagonal element 𝐷𝑖 [L2T−1] represents the
iffusivity coefficient in the 𝑖th compartment. If we confine the analysis to sufficiently small depths (𝑙 ≤ 1), we can assume that the
iffusion coefficients remain constant regardless of depth, as suggested in [38].

The transport term in (13) captures the dynamics of SOC within the column due to the sediment moisture fluxes 𝑣(𝑧, 𝑡) defined
in (2), considering convective migration.

The source term 𝐛𝑑 (𝑧, 𝑡) [M L−3 T−1] is related to the organic matter that is incorporated in the system in the form of
oot-derivative products [39] and we assume that it is modeled to decline exponentially with depth i.e.

𝐛𝑑 (𝑧, 𝑡) = 𝐁𝑑 (𝑡)
𝑏𝑒 𝑒−𝑏𝑒𝑧

1 − 𝑒−𝑏𝑒𝑙 (14)

where 𝐁𝑑 (𝑡) [M L−2 T−1] is the total input in the form of root-derivative products and 𝑏𝑒 > 0 is an empirical parameter.
System (13) is initialized with the initial distribution 𝐜(𝑧, 0) = 𝐜0(𝑧) and boundary conditions. We set a zero Neumann condition

at the bottom and a controlled flux condition at the upper boundary of the domain to model the incoming flux 𝐛𝑠(𝑡) [M L−2 T−1],
representing the carbon input from the decomposition of leaves or grass on the surface:

−
[

𝐷 𝜕𝐜
𝜕 𝑧 (0, 𝑡) − 𝑣(0, 𝑡) 𝐜(0, 𝑡)

]

= 𝐛𝑠(𝑡),
𝜕𝐜
𝜕 𝑧 (𝑙 , 𝑡) = 0 (15)

The zero Neumann condition imposed on the bottom of the soil column simulates free flow of dissolved substances through the
boundary, assuming that the diffusion flow can be neglected compared to the advection flow. This condition transforms into a
no-flow condition in the absence of water movement. Such assumption is reasonable when the impermeable bed is deep enough
and the water table changes rapidly, thus allowing modeling only the part of the soil column where SOC dynamics is essential for
further applications. The depth of the simulated column should thus ensure that the condition has negligible influence on SOC
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dynamics.
In the RothC model [32], the rate modifier 𝜌 = 𝜌(𝑧, 𝑡) is defined as the product of three factors 𝑘1(𝑇emp), 𝑘2(𝑠𝜃) and 𝑘3(𝑐),1

𝜌(𝑧, 𝑡) = 𝑘1(𝑇emp) 𝑘2(𝑠𝜃) 𝑘3(𝑐),

depending on sediment temperature 𝑇emp, saturation sediment moisture 𝑠𝜃 and sediment cover 𝑐, respectively. Let us analyze each
f these factors.

Modeling the temperature factor 𝑘1(𝑇emp). The factor 𝑘1(𝑇emp) depends on the sediment temperature 𝑇emp = 𝑇emp(𝑧, 𝑡) obtained by
solving the heat equation

𝐶𝑇emp

𝜕 𝑇emp

𝜕 𝑡 = 𝜕
𝜕 𝑧

(

𝜆
𝜕 𝑇emp

𝜕 𝑧 − 𝐶𝑇emp𝑣(𝑧, 𝑡)𝑇emp

)

, (16)

equipped by the initial condition 𝑇emp(𝑧, 0) = 𝑇0(𝑧) and the boundary conditions

𝑇emp(0, 𝑡) = 𝑇𝑎(𝑡),
𝜕 𝑇emp

𝜕 𝑧 (𝑙 , 𝑡) = 0, (17)

with 𝑇0(0) = 𝑇𝑎(0). Here 𝐶𝑇emp [M L−1 T−2 Q−1] is the heat capacity, 𝜆 [ML T−3 Q−1] is the thermal conductivity of the sediment,
nd 𝑇𝑎(𝑡) is the air temperature at time 𝑡. Note that the temperature field equation is connected to RRE through the velocity 𝑣(𝑧, 𝑡)
ppearing in the advection term.

Differently from [35], here we apply the following commonly used exponential function to model the 𝑘1 factor:

𝑘1(𝑇emp(𝑧, 𝑡)) = 𝑄
0.1

𝑇 emp(𝑧)
𝑇emp(𝑧, 𝑡)

(

𝑇emp(𝑧,𝑡)−𝑇 emp(𝑧).
)

10

In the above formula, 𝑇emp(𝑧, 𝑡) represents the sediment temperature, while 𝑇 emp(𝑧) denotes a reference distribution, typically
eflecting the mean temperature distribution within the analyzed area, both measured in Kelvin. The dimensionless value 𝑄10

is fixed at 2, as in [16]. The expression of 𝑘1(𝑇emp) ensures that when the temperature remains constant at its reference value
(i.e. 𝑇emp(𝑧, 𝑡) = 𝑇 emp(𝑧)), the factor 𝑘1 remains equal to 1. This implies that the degradation and respiration processes of SOC do
not undergo variations due to temperature fluctuations, as the 𝑘1 term does not affect their rates. Essentially, the model takes into
ccount the temperature effect only when it deviates from the reference distribution.

Modeling the moisture factor 𝑘2(𝑠𝜃). The decomposition rate factor 𝑘2(𝑠𝜃) is linked to the saturation moisture factor 𝑠𝜃 = 𝜃∕𝜃𝑠 where
𝜃 = 𝜃(ℎ(𝑧, 𝑡)) is the moisture content given in (3) and 𝜃𝑠 is its saturated value. Assuming the permanent wilting point to be equal to
he residual water content parameter 𝜃𝑟 in the van Genuchten model described in (3), when the sediment is dry (i.e., 𝜃 = 𝜃𝑟), we

assign the value of 0.2 to 𝑘2. As moisture increases, 𝑘2 linearly increases until it reaches its maximum value of 1 at the moisture
content 𝜃 = 𝜃0, where 𝜃0 = 0.5 (1 + 𝜃𝑟∕𝜃𝑠) 𝜃𝑠. Afterward, 𝑘𝑏 decreases until saturation is achieved (𝜃 = 𝜃𝑠). Introducing the constants
𝑠𝑟 = 𝜃𝑟∕𝜃𝑠 and 𝑠0 = 𝜃0∕𝜃𝑠, the decomposition rate factor 𝑘2(𝑠𝜃) is then defined as

𝑘2(𝑠𝜃) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0.2, if 𝑠𝜃 = 𝑠𝑟

1 − 0.8 𝑠0 − 𝑠𝜃
𝑠0 − 𝑠𝑟

, if 𝑠𝑟 < 𝑠𝜃 ≤ 𝑠0

1 − (1 − 𝑓𝑎𝑛𝑜𝑥)
𝑠𝜃 − 𝑠0
1 − 𝑠0

, if 𝑠0 < 𝑠𝜃 ≤ 1,

and it achieves, at saturation, the value 𝑓anox, representing a constant rate related to activity of CH4-generating bacteria.

Modeling the sediment cover factor 𝑘3. The coefficient 𝑘3 = 𝑘3(𝑐) is linked to the vegetation soil cover 𝑐(𝑡). In this context, we adopt
he definition provided in [16], which defines the expression 𝑘3(𝑐) = 0.6 − 0.4 (𝑐(𝑡) − 1), where 0 ≤ 𝑐(𝑡) ≤ 1 represents the fraction of

soil covered by vegetation, with 𝑐(𝑡) = 0 denoting bare sediment and 𝑐(𝑡) = 1 indicating fully vegetated sediment.

3.2. Fractional formulation of the model

In order to derive a fractional extension of the model (13), we introduce the vector

𝐷𝑞
𝑡0
𝐜(𝑡) =

[

𝐷𝑞
𝑡0
𝑐𝑑 𝑝𝑚(𝑡), 𝐷𝑞

𝑡0
𝑐𝑟𝑝𝑚(𝑡), 𝐷𝑞

𝑡0
𝑐𝑏𝑖𝑜(𝑡), 𝐷𝑞

𝑡0
𝑐ℎ𝑢𝑚(𝑡)

]⊤
,

where each entry represents the Caputo time derivative of order 𝑞 ∈ (0, 1] for the SOC concentration components [40,41].
Ensuring dimensional correctness involves dividing all terms on the right side of (13) by the function 𝜁 (𝑡, 𝑞), characterized by

dimensions of T𝑞−1 [14]. This dimensional adjustment results in the fractional in-depth RothC model:

𝐷𝑞
𝑡0
𝐜(𝑡) = 𝜕

𝜕 𝑧
(

𝐷(𝑧, 𝑡) 𝜕𝐜
𝜕 𝑧 − 𝑣(𝑧, 𝑡) 𝐜

)

+ 𝜌(𝑧, 𝑡)𝐴 𝐜 + 𝐛𝑑 (𝑧, 𝑡), 𝑧 ∈ [0, 𝑙], 𝑡 ≥ 𝑡0. (18)

where 𝐷(𝑡) = 𝐷∕𝜁 (𝑡, 𝑞), 𝜌(𝑧, 𝑡) = 𝜌(𝑧, 𝑡)∕𝜁 (𝑡, 𝑞) and 𝐛𝑑 (𝑧, 𝑡) = 𝐛𝑑 (𝑧, 𝑡)∕𝜁 (𝑡, 𝑞). Advection velocity is calculated as

𝑣(𝑧, 𝑡) = 𝐾(𝑧, 𝑡)
(

𝜕 ℎ(𝑧, 𝑡)
𝜕 𝑧 − 1

)

, 𝐾(𝑧, 𝑡) = 𝐾(𝑧, 𝑡)∕𝜁 (𝑧, 𝑡). (19)

1 𝑘 (𝑇 ), 𝑘 (𝑠 ), and 𝑘 (𝑐) correspond respectively to the factors 𝑎, 𝑏, and 𝑐 in [32].
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For the case 𝑞 = 1, the classical order derivative is recovered.
Examples of 𝜁 functions can be found in [42]. One simple choice, 𝜁 (𝑡, 𝑞) = 1, implies that the rates in a medium with memory

effects are equivalent to the rates in an ordinary medium. Another option suitable for the fractional-order RothC model is 𝛤 (2 −𝑞)𝑡𝑞−1
where 𝑡 ≥ 𝑡0 ≥ 0. The usage of the last variant assures 𝜁 (𝑧, 𝑡)𝐷𝑞

𝑡0
𝑡 = 1.

Regarding the well-posedness of the time-fractional Eq. (18) with the Caputo derivative, we refer to [43], where the existence
and uniqueness of its solutions in the case of time and space dependent coefficients have been proven for the case of Dirichlet
oundary conditions, considering time and space dependent coefficients. Even though not directly applicable in our context, we
ish to cite a very recent result concerning the Richards equation with an integral source term that models root water uptake [44].

4. Greenhouse gas emissions from wetlands

The microbial respiration or organic matter mineralization process in sediments can lead to the release of carbon dioxide (CO2)
and methane (CH4) into the atmosphere. While the present model accounts for the transfer and decomposition of SOC compounds
in the sediment, it does not directly simulate the emission of these gases into the atmosphere. On the other hand, the RothC model
an be used in (18) to estimate the amount of carbon that will be emitted.

The spatial distribution of the total carbon retained in the four active pools, denoted as 𝑆 𝑂 𝐶(𝑧, 𝑡) [M L−3], is the sum of these
individual pool concentrations in the entire column at a given time 𝑡, i.e.

𝑆 𝑂 𝐶(𝑧, 𝑡) = 𝟏⊤𝐜(𝑧, 𝑡) = 𝑐dpm(𝑧, 𝑡) + 𝑐rpm(𝑧, 𝑡) + 𝑐bio(𝑧, 𝑡) + 𝑐hum(𝑧, 𝑡). (20)

The rate of change of 𝑆 𝑂 𝐶(𝑧, 𝑡) with respect to time can be evaluated as:

𝐷𝑞
𝑡0
𝑆 𝑂 𝐶(𝑧, 𝑡) =

∑

𝑖∈𝐼

[

𝜕
𝜕 𝑧

(

𝐷
𝜕𝐜𝑖
𝜕 𝑧 − 𝑣 𝐜𝑖

)

+ 𝜌 (𝐴 𝐜)𝑖 + (𝐛𝑑 )𝑖
]

=
∑

𝑖∈𝐼

[

𝜕
𝜕 𝑧

(

𝐷
𝜕𝐜𝑖
𝜕 𝑧 − 𝑣 𝐜𝑖

)

+ (𝐛𝑑 )𝑖
]

+
∑

𝑖∈𝐼
𝜌 (𝐴 𝐜)𝑖,

where 𝐼 = {dpm, rpm, bio,hum}.
In the equation above the final sum, which is negative, represents the amount of carbon lost from the system over time due to

decomposition. We denote this quantity by 𝐸(𝑧, 𝑡) [M L−3 T−𝑞], defined as

𝐸(𝑧, 𝑡) ∶= −
∑

𝑖∈𝐼
𝜌(𝑧, 𝑡)(𝐴 𝐜)𝑖 = (1 − 𝛼 − 𝛽) 𝜌(𝑧, 𝑡)𝐤⊤𝐜(𝑧, 𝑡) > 0. (21)

The parameters 𝛼 and 𝛽, along with the components of the vector 𝐤, namely 𝑘dpm, 𝑘rpm, 𝑘bio, and 𝑘hum, are defined in Eq. (12) and
influence the carbon dynamics within the system.

In the following section, we model the emission fluxes of both CO2 and CH4 in a wetland. This is achieved using the carbon flux
given in (21). We differentiate between unsaturated layers, where only the CO2 emission flux 𝐸CO2

(𝑧, 𝑡) is present, and saturated
layers, where both 𝐸CO2

(𝑧, 𝑡) and 𝐸CH4
(𝑧, 𝑡) fluxes are active. When simulating long-term impact of wetlands on carbon storage and

emission, we neglect the processes of gas transport towards the sediment surface and consider instantaneous transfer of gases across
the sediment to the water and/or the atmosphere.

To evaluate the CO2 and CH4 emissions from the column [0, 𝑙] at a given time 𝑡, we distinguish between the unsaturated [0, 𝑧(𝑡)]
nd saturated [𝑧(𝑡), 𝑙] layers. When the column is entirely unsaturated, we assume 𝑧(𝑡) = 𝑙; when it is entirely saturated, we assume
𝑧(𝑡) = 0; otherwise, 𝑧(𝑡) corresponds to the water table level between 0 and 𝑙.

4.1. Carbon dioxide emissions in the unsaturated sediment layer

In the unsaturated sediment layer [0, 𝑧(𝑡)], where ℎ(𝑧, 𝑡) < 0, all the carbon amount 𝐸(𝑧, 𝑡) is transformed into carbon dioxide due
to the aerobic respiration of bacteria. Consequently, the amount of CO2 respiration from the unsaturated layer at time 𝑡 is given by

𝐸 𝑇 𝑢CO2
(𝑡) = ∫

𝑧(𝑡)

0
𝐸(𝑧, 𝑡) 𝑑 𝑧,

and the cumulative value of CO2 respiration 𝑅𝑢CO2
(𝑡0, 𝑡1) [M L−2] from the unsaturated sediment layer in the period from 𝑡 = 𝑡0 to

𝑡 = 𝑡1 is

𝑅𝑢CO2
(𝑡0, 𝑡1) = 𝐼1−𝑞𝑡0

𝐸 𝑇 𝑢CO2
(𝑡1)

where 𝐼1−𝑞𝑡0
𝑓 (𝑡) = 1

𝛤 (𝑞)
∫ 𝑡𝑡0 𝑓 (𝜏) (𝑡 − 𝜏)

𝑞−1 𝑑 𝜏 is the Riemann–Liouville integral. In the integer-order case (𝑞 = 1), 𝑅𝑢CO2
(𝑡0, 𝑡1) =

∫ 𝑡1 𝐸 𝑇 𝑢 (𝜏) 𝑑 𝜏.
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Fig. 1. A graphical representation of a hypothetical column of partially saturated substrate (left) and saturated substrate during flooding (right).

4.2. Carbon dioxide and methane emissions in the saturated sediment layer

In the saturated sediment layer [𝑧(𝑡), 𝑙], where ℎ(𝑧, 𝑡) ≥ 0 and the sediment can be covered by a water layer, the SOC decomposition
is mainly due to the activity of anaerobic bacteria which transform organic carbon into methane (CH4). However, not all the amount
𝐸(𝑧, 𝑡) is transformed into methane. Indeed, a portion of the carbon contained in the organic matter can still undergo oxidation even
under saturated conditions. In addition, a fraction of the methane produced by anaerobic decomposition in the saturated sediment
could be oxidized to carbon dioxide while crossing a thin aerobic layer at the sediment–water interface, before entering the overlying
water layer. Both these processes lead to the emission of CO2 instead of methane.

For simplicity, here we assume that a dimensionless fraction 𝜔 of organic matter becomes oxidized, with 0 < 𝜔 < 1. By defining
𝐸 𝑇 (𝑡) [M L−2 T−𝑞] as

𝐸 𝑇 (𝑡) = ∫

𝑙

𝑧(𝑡)
𝐸(𝑧, 𝑡) 𝑑 𝑧, (22)

the total gas emissions from the saturated sediment layer at time 𝑡 are thus

𝐸 𝑇CH4
(𝑡) = (1 − 𝜔)𝐸 𝑇 (𝑡), 𝐸 𝑇 𝑠CO2

(𝑡) = 𝜔 𝐸 𝑇 (𝑡).

Finally, the total amounts of CO2 and CH4 emission from a saturated sediment layer in the period from 𝑡 = 𝑡0 to 𝑡 = 𝑡1 are

𝑅CH4
(𝑡0, 𝑡1) = (1 − 𝜔) 𝐼1−𝑞𝑡0

𝐸 𝑇 (𝑡1), 𝑅𝑠CO2
(𝑡0, 𝑡1) = 𝜔 𝐼1−𝑞𝑡0

𝐸 𝑇 (𝑡1).

In the simulations detailed in the following section, we fixed 𝜔 = 0.75. This value is slightly above the estimated ranges, see
e.g. [45], and was chosen to ensure that the simulated annual CH4 emissions from a 1-meter sediment layer are 0.0294 k g∕m2,
slightly above the range of 0.0105–0.0262 k g∕m2 reported in [46] for our simulated scenarios, i.e., rice cultivation in delta rivers.

4.3. Global carbon dioxide emissions

The carbon dioxide emission from the entire column at a time 𝑡 is evaluated as the sum of carbon dioxide produced in both
saturated and unsaturated layers, as:

𝐸 𝑇CO2
(𝑡) = 𝐸 𝑇 𝑢CO2

(𝑡) + 𝐸 𝑇 𝑠CO2
(𝑡)

Similarly, the total carbon dioxide emission in a time interval [𝑡0, 𝑡1] is given by the following sum:

𝑅CO2
(𝑡0, 𝑡1) = 𝑅𝑢CO2

(𝑡0, 𝑡1) + 𝑅𝑠CO2
(𝑡0, 𝑡1).

5. Simulations and analysis

Our aim here is to simulate the effects of periodic flooding and sediment moisture fluxes on the balance of sediment carbon
stocks and greenhouse gas emissions in a coastal wetland. In addition, we seek to estimate the effectiveness of restoration actions
in modifying the carbon storage and fluxes. The reference domain is an idealized substrate column with vertical thickness 𝑙 which
undergoes periodic flooding, as depicted in Fig. 1. We set 𝑧 = 0 at the sediment upper surface. This scenario is inspired by the
Ebro Delta region, situated in northeastern Spain near the mouth of the Ebro River, where flooding is routinely practiced for rice
cultivation. The area is included among the case studies of RESTORE4Cs, an ongoing Horizon Europe project, which focuses on the
role of restoration in improving the greenhouse gas abatement potential of coastal wetlands.
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Fig. 2. Selected layer for the Ebro Delta area from the MODIS project of the NASA program (product mod17a3 h).

5.1. Data and parameters

We outline the three differential equations that constitute our model, accompanied by explanations regarding the data and
parameters utilized for conducting simulations.

Heat equation for sediment temperature (16). The fixed parameters for heat capacity and thermal conductivity were set as 𝐶𝑇emp =
2.2 × 106 J m−3 K−1 and 𝜆 = 3.57 W m−1 K−1, corresponding to the values for clay loam [47]. To derive the function 𝑇𝑎(𝑡) for the
boundary conditions (17), we used a linear change in averaged air temperature data2 in the period 1991–2021 from the city of
Amposta (Spain), the nearest to the Ebro Delta (see Table 2). Moreover, we set a constant initial distribution of sediment temperature
𝑇0(𝑧) = 9.3 ◦C to match the air temperature 𝑇𝑎(Jan) for January.

Richardson-Richards equation for water head (1). The fixed parameters for RRE, along with their respective references, are sum-
marized in Table 1. According to [8], rice fields are flooded from the end of April to September–October. To model this, we
implemented a linear change of the water level 𝑙𝑒(𝑡) from the value of 0.67 m below bottom depth in January (𝑙𝑒 = 0.67 m, the
median surface level above the mean sea level reported in [48]) to the level of 25 cm above sediment surface in June (𝑙𝑒 = −0.25 m).
The function 𝑙𝑒(𝑡) was incorporated into the Dirichlet condition (7) on the bottom side of the domain. For Neumann condition (6) on
the upper side, precipitation and evapotranspiration data are required when water does not gather on the sediment surface. Averaged
precipitation data in the period 1991–2021 from the city of Amposta are provided in Table 2. Additionally, using temperature data,
evapotranspiration was calculated according to the Hargreaves–Samani formula [49], which uses the average annual air temperature
𝑇 emp(𝑧) set as a constant value of 287.63 K (14.48 ◦C). The initial distribution of water head ℎ0(𝑧) was taken as the steady-state
solution of RRE, by solving Eq. (11), when 𝑞 = 𝑃 (𝐽 𝑎𝑛) − 𝐸 𝑇 (𝐽 𝑎𝑛) = 6 ⋅ 10−9 m∕s and 𝑙𝑒 = 𝑙𝑒(𝐽 𝑎𝑛) = 0.67 m.

Fractional RothC model (18). The fixed parameters for the fractional RothC model are provided in Table 3, along with their
references. The initial content of SOC compounds was considered equal among them, with their sum obtained from the data
provided in [8]. Specifically, using a bulk density of 1770 k g∕m3 and a percentage of SOC content equal to 0.63%, we calculated
𝐶0 = 0.0063 × 1770 = 11.12 k g∕m3. The sediment cover factor values are detailed in Table 2: 𝑘3(𝑐) was set equal to 0.6 from June to
September, indicating covered sediment, and 1 during other months, indicating bare sediment. We used Net Primary Productivity
(NPP) values as an estimate of total sediment carbon input, as suggested by [11] and further justified by the findings in [50]. These
findings include a comparison between litter input derived from solving the inverse problem for the RothC model and NPP values
obtained from remote sensing estimates. The annual NPP value was set at 0.5 k g∕m2 per year, falling within the range estimated
using remote sensing techniques by MODIS3 for the territory of Ebro Delta in 2022 [51] (refer to Figs. 2, 3). Furthermore, assuming
a constant ratio of NPP to gross primary production (GPP), as suggested in previous studies (see, for example, [52]), we utilized the
MODIS GPP product with an 8-day time scale for the year 2023 to calculate the yearly NPP/GPP rate (equal to 0.488). Subsequently,
we assessed the distribution of NPP and, consequently SOC input, throughout the year.

The resulting values are summarized in Table 2. Finally, we assumed that 70% of the SOC input enters the model in the form
of root-derived products (𝐁𝑑), while the remaining portion enters through the sediment surface (𝐛𝑠). The exponent 𝑏𝑒 used for the
spatial distribution of 𝐛𝑑 in Eq. (14) was set to 5.

2 https://en.climate-data.org/europe/spain/catalonia/amposta-56879/.
3 product mod17a3 h. Accessed by: AppEEARS Team. (2024). Application for Extracting and Exploring Analysis Ready Samples (AppEEARS). Ver. 3.48. NASA

EOSDIS Land Processes Distributed Active Archive Center (LP DAAC), USGS/Earth Resources Observation and Science (EROS) Center, Sioux Falls, South Dakota,
USA. Accessed March 22, 2024. https://appeears.earthdatacloud.nasa.gov.
377

https://en.climate-data.org/europe/spain/catalonia/amposta-56879/
https://appeears.earthdatacloud.nasa.gov


Mathematics and Computers in Simulation 233 (2025) 369–388V. Bohaienko et al.
Fig. 3. A box plot of NPP data in the Ebro delta layer spanning the period from 2000 to 2022.

Table 1
Fixed parameter values for RRE (1) obtained using Rosetta v.1 model on the base of midrange values of clay,
silt, and sand content for riparian land R1 (subsoil horizon) from [8].
Param. Description Value & Dim.

𝜃𝑟 Residual water content 0.098
𝜃𝑠 Saturated water content 0.422
𝑎 van Genuchten parameter 0.5m−1

𝑛 van Genuchten parameter 1.436
𝐾𝑠 Filtration coefficient 1.37 × 10−7 m s−1
𝜂 Mualem parameter 0.678
𝑆𝑠 Specific storage [53] range 10−5–10−3 m−1

Table 2
Average annual values for temperature (Temp), evapotranspiration (ET), precipitation (P) and level of external water table 𝑙𝑒(𝑡)
entering the RRE as boundary conditions. The average annual values of SOC input (NPP - 70% enters the model as 𝐁𝑑 , while
30% enters as 𝐛𝑠) and sediment cover factors entering in the fractional-order in-depth RothC model (18) are reported in the last
two columns.
Month Temp ET P 𝐥𝑒 NPP 𝑘𝑐

(C◦ ) (m s−1) (m s−1) (m) (k g m−2 s−1)

Jan 9.3 1.1 ⋅ 10−8 1.7 ⋅ 10−8 0.5 3.54 ⋅ 10−9 1.00
Feb 9.7 1.4 ⋅ 10−8 1.3 ⋅ 10−8 0.3125 3.54 ⋅ 10−9 1.00
Mar 12.1 2.1 ⋅ 10−8 1.6 ⋅ 10−8 0.125 5.82 ⋅ 10−9 1.00
Apr 14.4 3.0 ⋅ 10−8 2.1 ⋅ 10−8 −0.0625 7.07 ⋅ 10−9 1.00
May 17.7 3.9 ⋅ 10−8 2.2 ⋅ 10−8 −0.25 7.07 ⋅ 10−9 1.00
Jun 22 4.9 ⋅ 10−8 1.1 ⋅ 10−8 −0.25 2.76 ⋅ 10−8 0.60
Jul 24.6 5.1 ⋅ 10−8 8.9 ⋅ 10−9 −0.25 4.91 ⋅ 10−8 0.60
Aug 24.8 4.8 ⋅ 10−8 1.4 ⋅ 10−8 −0.25 4.38 ⋅ 10−8 0.60
Sep 21.9 3.8 ⋅ 10−8 2.7 ⋅ 10−8 −0.25 2.78 ⋅ 10−8 0.60
Oct 18.3 2.7 ⋅ 10−8 2.9 ⋅ 10−8 −0.0625 9.58 ⋅ 10−9 1.00
Nov 13 1.6 ⋅ 10−8 2.0 ⋅ 10−8 0.125 3.54 ⋅ 10−9 1.00
Dec 10 1.1 ⋅ 10−8 1.7 ⋅ 10−8 0.3125 3.54 ⋅ 10−9 1.00

5.2. Simulation results

The simulations explored several different issues. Concerning RRE, our objective was to simulate the dynamics of water head
movement under the influence of flooding. Subsequently, we aimed to investigate whether alterations in specific storage (𝑆𝑠)
within its variability range might impact the solutions. We then proceeded to analyze the impacts of integrating both diffusive and
advective movements into the original RothC model. Furthermore, we examined the potential benefits of introducing fractional order
derivatives on the distribution of sediment organic carbon (SOC) compounds within the spatial domain. Lastly, the proposed coupled
REE and in-depth RothC model was validated by examining the effects of a flooding program on a restored wetland, specifically in
terms of carbon sequestration and greenhouse gas emissions.

Numerical solutions were obtained using a finite-difference approach with central-difference approximation of the first-order
spatial derivative and L1-scheme to approximate time-fractional Caputo derivative (see Appendix A). In our simulations we
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Table 3
Fixed parameters for the in-depth RothC model.
Param. Description & Ref Value & Dim.

𝐷 Diffusivity: Higher value in [54], lower one in [15] [10−9 , 10−12] m2 s−1

𝑐 𝑙 𝑎𝑦 Clay content: Midrange value for riparian land R1 (subsoil horizon) from [8] 24.5%
𝑟 DPM/RPM ratio. Value for improved grassland from [32]. 0.6
𝑘𝑑 𝑝𝑚 DPM decomposition rate [32] 3.21 ⋅ 10−7 s−1

𝑘𝑟𝑝𝑚 RPM decomposition rate [32] 9.64 ⋅ 10−9 s−1

𝑘𝑏𝑖𝑜 BIO decomposition rate [32] 2.12 ⋅ 10−8 s−1

𝑘ℎ𝑢𝑚 HUM decomposition rate [32] 6.55 ⋅ 10−10 s−1

𝑓𝑎𝑛𝑜𝑥 Rate modifier factor due to anaerobic respiration [13] 0.025

Fig. 4. CO2 and CH4 respiration from 1 m layer for different soil column depths.

Fig. 5. In-depth water head (ℎ(𝑧, 𝑡)) profiles over a one year simulation, from RRE (1). red lines indicate positive values (saturated layer) and yellow lines
indicate negative values (unsaturated layer). Parameter: 𝑆𝑠 = 10−3 m−1. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

considered a uniform spatial grid of 100 points of the substrate column with length of 𝑙 = 1 m, and time-nonuniform finite-difference
rid with maximum step length set to one day. For approximating the integral quantities related to the greenhouse gas fluxes we
mployed the rectangular quadrature rule as detailed in Appendix B.

Influence of flooding on the movement of the water head. We consider how the water table responds to the temporal variation of the
boundary condition 𝑙𝑒(𝑡) provided by (7).

Both during flooding, when groundwater moves towards the surface, and during drying, when the sediment becomes directly
xposed to the air, it took up to 7 days for the simulated water table level to reach the value imposed by the bottom boundary

condition. However, this discrepancy increases with the increase of soil column’s depth. Because of the increasing influence of
evapotranspiration and precipitation on the upper layer of soil, in which most CO2 respiration occurs, this in turn leads to the
changes in yearly dynamics of CO2 respiration from 1 m layer passing from 1 m to 2 m depth of the column (Fig. 4). No significant
influence of soil column’s depth on CH4 respiration was observed.

Influence of specific storage 𝑆𝑠 and diffusivity 𝐷 on simulation results. In our simulations, the changes of specific storage in the
range [10−5, 10−3] did not lead to significant changes in the solutions of RRE over a one-year time period. In Fig. 5, we report
the approximated values of water head ℎ(𝑧, 𝑡) for the specific storage set at 𝑆𝑠 = 10−3. In Fig. 6 the corresponding solution of heat
equation for sediment temperature 𝑇 (𝑧, 𝑡) is depicted.
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Fig. 6. In-depth temperature profiles from the heat equation (16). Parameter: 𝑆𝑠 = 10−3 m−1.

Fig. 7. In-depth SOC profiles over a one year simulation, from the integer-order RothC model (13) with two different diffusivity coefficients. Parameter:
𝑆𝑠 = 10−3 m−1.

Fig. 8. In-depth CO2 emission (𝐸CO2
(𝑧, 𝑡)) profiles over a one year simulation, from in-dept integer-order RothC model (13) with two different diffusivities.

Parameter: 𝑆𝑠 = 10−3 m−1.

Throughout the year, we observed minimal changes in the total amount of carbon in the entire column, ∫ 𝑙0 𝑆 𝑂 𝐶(𝑧, 𝑡), 𝑑 𝑧, when
iffusivity was changed from 𝐷 = 10−9 to 10−10. A slightly higher SOC content was obtained for 𝐷 = 10−9. For different values of 𝐷

the spatial distribution of SOC content gave the higher differences near the surface (see Fig. 7) and interchanging zones of higher
and lower respiration are shown in Figs. 8–9.

Influence of velocity field and fractional derivative’s order on simulation results. A period of 20 years was simulated using the fractional-
rder model for three cases: (1) 𝑞 = 1 (integer order); (2) 𝑞 = 0.97, 𝜁 (𝑧, 𝑡) = 1; (3) 𝑞 = 0.97, with 𝜁 (𝑧, 𝑡) = 𝛤 (2 − 𝑞)𝑡𝑞−1 set as a power
unction (Figs. 10–11). When 𝜁 (𝑧, 𝑡) had the form of power function, we observed a slight decrease in the greenhouse gas emission

compared to the integer-order case (Figs. 10–11).
In the case of 𝜁 (𝑧, 𝑡) = 1, respiration had an opposite behavior: compared to the integer-order model, the greenhouse gas emissions

were larger.
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Fig. 9. In-depth CH4 emission (𝐸CH4
(𝑧, 𝑡)) profiles over a one year simulation, from in-dept integer-order RothC model (13) with two different diffusivities.

Parameter: 𝑆𝑠 = 10−3 m−1.

Fig. 10. Dynamics of CO2 respiration over a 20-year simulation of the in-depth fractional-order RothC model (18). Parameters: 𝑆𝑠 = 10−3 m−1, 𝐷 = 10−9 m2 s−1.

Fig. 11. Dynamics of CH4 respiration over a 20-year simulation of the in-depth fractional-order RothC model (18). Parameters: 𝑆𝑠 = 10−3 m−1, 𝐷 = 10−9 m2 s−1.

When SOC compounds transport is modeled without taking into account advection movements due to the sediment moisture,
higher total respiration of both CO2 and CH4 is observed during the whole simulated period. In this case lower changes in SOC
content are observed near the surface (Fig. 12).

Flooding scenario. As an example, the model was run on the flooding scenario described in [55]. We simulated changes in CH4
espiration when the coastal wetland used for agricultural production, in this case rice growing, was flooded to revert it to its

natural state. We assumed that in the natural state the wetland sediments were constantly covered by 25 cm of water, as described
in [55].

First we modeled 20 years in the rice growing scenario, with 𝑙𝑒 varying according to the values given in Table 2. Assuming
that SOC compounds are in the state close to equilibrium at the initial moment of time, we used the classical RothC model with
espiration rate assessed for 𝑡 = 0 to obtain the approximation to such an equilibrium setting the SOC inputs as 𝑀 ⋅𝑁 𝑃 𝑃 and fitting

to have total SOC amount equal to 𝐶0 [35]. As the result we have 𝐜0(𝑧) = [0.38, 5.54, 0.79, 4.47]𝑇 k g∕m3 with 𝑀 = 1∕1.75. A
simulation for several years was then performed to obtain in-depth distribution 𝐜 (𝑧) in a close-to-steady state.
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Fig. 12. In-depth SOC profiles over a one year simulation, from in-dept integer-order RothC model (13) with and without advection term. Parameters:
𝑆𝑠 = 10−3 m−1, 𝐷 = 10−9 m2 s−1.

Fig. 13. Temporal dynamics of total SOC, 10 years before and 10 years after flooding. Parameters: 𝑆𝑠 = 10−3, 𝐷 = 10−9, 𝑞 = 1.

Fig. 14. Temporal dynamics of total CO2 emission, 10 years before and 10 years after flooding. Parameters: 𝑆𝑠 = 10−3, 𝐷 = 10−9, 𝑞 = 1.

Afterwards, 20 years were modeled with the constant value 𝑙𝑒 = −0.25 m. The dynamics of SOC, CO2 and CH4 respiration are
reported in Figs. 13–15, respectively. The simulated yearly CH4 respiration for the restored wetland was equal to 0.027 k g∕m2, that
is close to the lower bound of the range 0.03 − 0.07 k g∕m2 reported in Fig. 6e in [55].

6. Discussion and conclusions

In this study, we introduced a novel extension of the RothC model to enhance the modeling of carbon dynamics in wetland
ediments. By integrating temporal fractional-order derivatives into spatial dimensions, we developed an adaptive tool capable
f capturing the complexities of wetland ecosystems. Our model incorporates Richardson–Richard’s equation for moisture fluxes,
 diffusion–advection–reaction equation for fractional-order dynamics of SOC compounds, and a temperature transport equation.
hrough simulations, we investigated the influence of diffusive movement, sediment moisture content, advection terms, and flooding
cenarios on carbon dynamics in wetlands.

Compared to the model used in [8], our model takes into account the hydro-physical properties of the saturated and unsaturated
sediment, dependencies of decomposition rate on sediment wetness and temperature, and explicitly simulates SOC compounds
382
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Fig. 15. Temporal dynamics of total CH4 emission, 10 years before and 10 years after flooding. Parameters: 𝑆𝑠 = 10−3, 𝐷 = 10−9, 𝑞 = 1.

migration. However, in our model the sediment is considered to have properties which are independent on time, while sediment
ccretion is simulated in [8].

Compared to the model used in JULES [16], our approach includes an advection term in the equations for the SOC compounds
igration. We also consider the time-fractional version of the advection–diffusion–reaction equation. This allows for capturing

memory effects on SOC dynamics, which can be caused by processes that are not explicitly modeled (e.g., mass exchange processes
etween dissolved substances, sediment etc...).

Focusing on coastal wetlands, we implemented a set of boundary conditions based on the assumption that the level of the water
able is controlled by external processes such as tidal variations or agricultural flooding/drying. In our approach, the transition
rocesses between the change of water level in the external source and the change of water table depth in the sediment column are

assumed to last for a negligible period of time. Such transitional periods were found to be about 7 days, significantly shorter than
the monthly computation step used in the RothC model. A similar approach was successfully applied for modeling the influence of
cean surge on groundwater in [56].

Implementing these boundary conditions allowed for the assessment of the impact of advection terms on model solutions,
highlighting the importance of considering both hydrological and ecological factors in wetland modeling. Simulations in a 1-meter-
deep sediment column showed that water movement can lead to bidirectional migration of SOC compounds to lower sediment
orizons.

Furthermore, considering advection terms led to greater variability in the SOC content in the upper 30 cm layer of the sediment.
The introduction of fractional-order derivatives in the model allowed simulating SOC dynamics that, in accordance with previous

esults (see e.g. [42]), could be either slower or faster than for the classical integer-order case. Thus, fitting the order of the fractional
derivative allows one to increase prediction accuracy, adapting the model to the particular conditions in which deviations from the
classical behavior occur.

Analyzing the impacts of environmental factors such as diffusive movement and moisture content on the organic carbon dynamics
in the sediment, we found that the diffusivity of SOC compounds was an important factor influencing the SOC spatial distribution.
As the value of the diffusivity is hard to measure directly, its value, along with the value of the fractional derivative’s order, are the

odel parameters that should be fitted to reproduce the data.
Finally, by assessing wetland flooding scenarios, we illustrated the potential effectiveness of restoration strategies in enhancing

carbon sequestration and ecosystem resilience. Our simulations showed lower respiration and SOC outflow from 1 m sediment
column following wetland restoration, contributing to understand ecosystem responses to management interventions.

The findings of this study may have significant implications on ecosystem management and conservation efforts. By providing
a more comprehensive understanding of sediment carbon dynamics in wetlands, our model can inform decision-making processes
related to wetland conservation, restoration, and sustainable land management practices. Furthermore, our approach highlights
the importance of considering spatial and temporal dynamics in ecosystem modeling to improve predictions and support effective
nvironmental management strategies.

While our model offers advancements in modeling wetland sediment carbon dynamics, several challenges and opportunities for
improvement remain. A potential development of our modeling approach could involve incorporating changes in soil structure over
time. In that case, where stratified soils will be considered, variations in parameters such as specific storage, saturated water content,
and residual water content will be considered. Modeling layered soils introduces discontinuities in the coefficients of the equations,

hich require specific numerical techniques for proper treatment. The numerical techniques presented in [57–60] provide a solid
oundation for future enhancements of the model to account for non-homogeneous soil conditions.

Future research should focus on refining model parameters, integrating additional environmental variables, and validating model
redictions performing an uncertainty analysis to enhance model accuracy and reliability. Further developments could explore
dditional complexities in wetland ecosystems, such as interactions between carbon and nutrient cycles, vegetation dynamics, and
eedback mechanisms. Moreover, efforts to integrate remote sensing data and advanced modeling techniques could enhance the
ccuracy and applicability of wetland models for real-world management and conservation initiatives.
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Appendix A. Numerical scheme and computational issues

To obtain numerical solutions we apply a widely used finite-difference approach with central-difference approximation of the
first-order spacial derivative and L1-scheme to approximate time-fractional Caputo derivative.

We consider a space-uniform and time-nonuniform finite-difference grid

𝜔 =
{

(𝑧𝑖 = 𝑖ℎ𝑧, 𝑡𝑗 = 𝑡𝑗−1 + 𝜏𝑗 ) ∶ 𝑖 = 0,… , 𝑛; 𝑗 = 1, 2,…}

where ℎ𝑧 = 𝐿∕𝑛 is the step with respect to the depth 𝑧, 𝜏𝑗 is the length of the step 𝑗 with respect to the time 𝑡. The grid analogue
f the function ℎ (and correspondingly the other functions) is defined as ℎ𝑖,𝑗 = ℎ(𝑧𝑖, 𝑡𝑗 ).

On the grid 𝜔, the derivatives of the function ℎ (and correspondingly the other functions) are approximated the following
way [61]:

𝜕 ℎ(𝑧, 𝑡)
𝜕 𝑡

|

|

|

|𝑧=𝑧𝑖 ,𝑡=𝑡𝑗+1
=
ℎ𝑖,𝑗+1 − ℎ𝑖,𝑗

𝜏𝑗+1
+ 𝑂(𝜏𝑗+1),

𝜕 ℎ(𝑧, 𝑡)
𝜕 𝑧

|

|

|

|𝑧=𝑧𝑖 ,𝑡=𝑡𝑗
=
ℎ𝑖+1,𝑗 − ℎ𝑖−1,𝑗

2ℎ𝑧
+ 𝑂(ℎ2𝑧),

𝜕2ℎ(𝑧, 𝑡)
𝜕 𝑧2

|

|

|

|

|𝑧=𝑧𝑖 ,𝑡=𝑡𝑗

=
ℎ𝑖−1,𝑗 − 2ℎ𝑖,𝑗 + ℎ𝑖+1,𝑗

ℎ2𝑧
+ 𝑂(ℎ2𝑧),

The Caputo derivative 𝐷𝑞
𝑡 of the concentration functions 𝑐𝑚, 𝑚 = 0,… , 3, is approximated as [62]:

𝐷𝑞
𝑡 𝑐𝑚(𝑧, 𝑡)||𝑧=𝑧𝑖 ,𝑡=𝑡𝑗 =

1
𝛤 (2 − 𝑞)

𝑗−1
∑

𝑘=0
𝑏𝑞𝑘𝑗

𝑐𝑚,𝑖,𝑘+1 − 𝑐𝑚,𝑖,𝑘
𝜏𝑘+1

+ 𝑂

(

(

max
𝑗
𝜏𝑗

)2−𝑞
)

,

𝑏𝑞𝑘𝑗 = (𝑡𝑘+1 − 𝑡𝑗 )1−𝑞 − (𝑡𝑘 − 𝑡𝑗 )1−𝑞 .

Further, we employ the so-called ‘‘short memory principle’’ [63] restricting lower limit of summation to 𝑘 = 𝑘𝑞𝑗 ∶ 𝑏
𝑞
𝑘𝑗 < 𝜀 where

is a given accuracy threshold. This imposes additional truncation error, which in the case of fixed time steps 𝜏 has, according

o [64], an order less than 𝑂(𝑗 𝜏1−𝑞 − 𝜀−1∕𝑞𝜏
1−𝑞2
𝑞 ).
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By employing these approximations and linearizing Eq. (1) representing 𝐾(ℎ, 𝑧), 𝐶(ℎ, 𝑧), and 𝜃(ℎ, 𝑧) through the value of ℎ from
he previous time step, we derive the following linear system for time step 𝑗:

ℎ𝑖−1,𝑗 ⋅ 𝐴
(ℎ)
𝑖,𝑗−1 + ℎ𝑖+1,𝑗 ⋅ 𝐵

(ℎ)
𝑖,𝑗−1 + ℎ𝑖,𝑗 ⋅ 𝑅

(ℎ)
𝑖,𝑗−1 = 𝛷(ℎ)

𝑖,𝑗−1, 𝑖 = 1,… , 𝑛 − 1 (A.1)

where:

𝐴(ℎ)
𝑖,𝑗−1 =

1
ℎ2𝑧

( 1
4
𝐾

(

ℎ𝑖+1,𝑗−1
)

−𝐾
(

ℎ𝑖,𝑗−1
)

− 1
4
𝐾

(

ℎ𝑖−1,𝑗−1
)

)

,

𝐵(ℎ)
𝑖,𝑗−1 =

1
ℎ2𝑧

(

−1
4
𝐾

(

ℎ𝑖+1,𝑗−1
)

−𝐾
(

ℎ𝑖,𝑗−1
)

+ 1
4
𝐾

(

ℎ𝑖−1,𝑗−1
)

)

,

𝑅(ℎ)
𝑖,𝑗−1 =

2𝐾
(

ℎ𝑖,𝑗−1
)

ℎ2𝑧
+ 1
𝜏𝑗+1

(

𝐶
(

ℎ𝑖,𝑗−1
)

+
𝜃(ℎ𝑖,𝑗−1, 𝑧𝑘)

𝜃𝑠
𝑆𝑠

)

,

𝛷(ℎ)
𝑖,𝑗−1 =

ℎ𝑖,𝑗−1
𝜏𝑗+1

(

𝐶
(

ℎ𝑖,𝑗−1
)

+
𝜃(ℎ𝑖,𝑗−1, 𝑧𝑘)

𝜃𝑠
𝑆𝑠

)

−
𝐾

(

ℎ𝑖+1,𝑗−1
)

−𝐾
(

ℎ𝑖−1,𝑗−1
)

2ℎ𝑧
.

The bottom boundary condition takes the form:

ℎ𝑛,𝑗 = 𝐿 − 𝐿𝑒(𝑡).

For the upper boundary condition, in order to attain a second-order approximation, we utilize the ghost point technique. The
esulting equation is obtained by averaging 𝐾 according to the approach outlined in [65]:

ℎ0,𝑗 +
𝐴(ℎ)
0,𝑗−1 + 𝐵

(ℎ)
0,𝑗−1

𝑅(ℎ)
0,𝑗−1

ℎ1,𝑗 =
𝛷(ℎ)

0,𝑗−1 − 2ℎ𝑧 𝐴(ℎ)
0,𝑗−1

(

2 𝐸(𝑡𝑗 )−𝑃 (𝑡𝑗 )
𝐾(ℎ0,𝑗−1)+𝐾(ℎ1,𝑗−1)

+ 1
)

𝑅(ℎ)
0,𝑗−1

.

Applying the same technique to approximate Eq. (16), we obtain:

𝑇𝑖−1,𝑗 ⋅ 𝐴
(𝑇 )
𝑖,𝑗−1 + 𝑇𝑖+1,𝑗 ⋅ 𝐵

(𝑇 )
𝑖,𝑗−1 + 𝑇𝑖,𝑗 ⋅ 𝑅

(𝑇 )
𝑖,𝑗−1 = 𝛷(𝑇 )

𝑖,𝑗−1 𝑖 = 1,… , 𝑛 − 1, (A.2)

where

𝐴(𝑇 )
𝑖,𝑗−1 = − 𝜆

ℎ2𝑧
−
𝑣𝑖,𝑗
2ℎ𝑧

, 𝐵(𝑇 )
𝑖,𝑗−1 = − 𝜆

ℎ2𝑧
+
𝑣𝑖,𝑗
2ℎ𝑧

,

𝑅(𝑇 )
𝑖,𝑗−1 =

2𝜆
ℎ2𝑧

+ 𝐶𝑇emp𝑤𝑖,𝑗 +
𝐶𝑇emp

𝜏𝑗+1
, 𝛷(𝑇 )

𝑖,𝑗−1 =
𝐶𝑇emp𝑇𝑖,𝑗−1

𝜏𝑗+1
,

𝑇0,𝑗 = 𝑇𝑎(𝑡𝑗 ), 𝑇𝑛,𝑗 +
𝐴(𝑇 )
𝑛,𝑗−1 + 𝐵

(𝑇 )
𝑛,𝑗−1

𝑅(𝑇 )
𝑛,𝑗−1

𝑇𝑛−1,𝑗 =
𝛷(𝑇 )
𝑛,𝑗−1

𝑅(𝑇 )
𝑛,𝑗−1

.

Here,

𝑣𝑖,𝑗 = 𝑣(𝑧𝑖, 𝑡𝑗 ) = 𝐾(ℎ𝑖,𝑗 )
(ℎ𝑖+1,𝑗 − ℎ𝑖−1,𝑗

2ℎ𝑧
− 1

)

,

𝑤𝑖,𝑗 =
𝜕 𝑣
𝜕 𝑧 (𝑧𝑖, 𝑡𝑗 ).

Finally, for Eq. (18), denoting 𝑣𝑖,𝑗 = 𝑣𝑖,𝑗∕𝜁 (𝑧𝑖, 𝑡𝑗 ) and 𝑤𝑖,𝑗 = 𝑤𝑖,𝑗∕𝜁 (𝑧𝑖, 𝑡𝑗 ), we have for the compartment 𝑚 = 0,… , 3:

𝑐𝑚,𝑖−1,𝑗 ⋅ 𝐴
(𝑐𝑚)
𝑖,𝑗−1 + 𝑐𝑚,𝑖+1,𝑗 ⋅ 𝐵

(𝑐𝑚)
𝑖,𝑗−1 + 𝑐𝑚,𝑖,𝑗 ⋅ 𝑅

(𝑐𝑚)
𝑖,𝑗−1 = −𝛷(𝑐𝑚)

𝑖,𝑗−1, 𝑖 = 1,… , 𝑛 − 1 (A.3)

where

𝐴(𝑐𝑚)
𝑖,𝑗−1 = −𝐷𝑚

ℎ2𝑧
−
𝑣𝑖,𝑗
2ℎ𝑧

, 𝐵(𝑐𝑚)
𝑖,𝑗−1 = −𝐷𝑚

ℎ2𝑧
+
𝑣𝑖,𝑗
2ℎ𝑧

,

𝑅(𝑐𝑚)
𝑖,𝑗−1 =

2𝐷𝑚

ℎ2𝑧
+𝑤𝑖,𝑗 +

𝑏𝑞𝑗−1,𝑗
𝛤 (2 − 𝑞)𝜏𝑗+1

,

𝛷(𝑐𝑚)
𝑖,𝑗−1 =

𝑏𝑞𝑗−1,𝑗ℎ𝑖,𝑗−1
𝛤 (2 − 𝑞)𝜏𝑗+1

− 1
𝛤 (2 − 𝑞)

𝑗−2
∑

𝑘=𝑘𝑞𝑗

𝑏𝑞𝑘𝑗
𝑐𝑚,𝑖,𝑘+1 − 𝑐𝑚,𝑖,𝑘

𝜏𝑘+1
+
(

𝜌𝑖,𝑗 𝐴 𝐜𝑖,𝑗 + (𝐛𝑑 )𝑖,𝑗
)

𝑚

For the boundary conditions we have:

𝑐𝑚,0,𝑗 +
𝐴(𝑐𝑚)
0,𝑗−1 + 𝐵

(𝑐𝑚)
0,𝑗−1

(𝑐𝑚) (𝑐𝑚)
𝑐𝑚,1,𝑗 =

𝛷(𝑐𝑚)
0,𝑗−1 − 2ℎ𝑧

𝐴(𝑐𝑚)
0,𝑗−1

𝐷𝑚
(𝐛𝐬(𝑡𝑗 ))𝑚

(𝑐𝑚) (𝑐𝑚)
,
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𝑅0,𝑗−1 − 2ℎ𝑧 𝐴0,𝑗−1𝑣0,𝑗−1∕𝐷𝑚 𝑅0,𝑗−1 − 2ℎ𝑧 𝐴0,𝑗−1𝑣0,𝑗−1∕𝐷𝑚
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𝑐𝑚,𝑛,𝑗 +
𝐴(𝑐𝑚)
𝑛,𝑗−1 + 𝐵

(𝑐𝑚)
𝑛,𝑗−1

𝑅(𝑐𝑚)
𝑛,𝑗−1

𝑐𝑚,𝑛−1,𝑗 =
𝛷(𝑐𝑚)
𝑛,𝑗−1

𝑅(𝑐𝑚)
𝑛,𝑗−1

.

To deal with non-linearity, Picard iterations are further applied on the base of the sequential solution of the systems (A.1)–(A.3)
finalizing the time-stepping procedure. Linear systems are solved using the TFQMR algorithm [66]. Time steps are dynamically
changing according to an empirical procedure on the base of the convergence rate of the TFQMR algorithm.

Appendix B. Numerical evaluation of greenhouse fluxes

Using the rectangular rule quadrature, the CO2 transpiration 𝑇 𝑟(1)CO2
(𝑡𝑗 ) at the fractal time moment 𝑡𝑗 from the entire sediment

column is calculated as

𝑇 𝑟(1)CO2
(𝑡𝑗 ) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ℎ𝑧
𝑛
∑

𝑖=0
𝜌𝑖,𝑗 𝐴 𝐜𝑖,𝑗 , if ℎ𝑖,𝑗 < 0,

ℎ𝑧 𝜔
𝑛
∑

𝑖=0
𝜌𝑖,𝑗 𝐴 𝐜𝑖,𝑗 , if ℎ𝑖,𝑗 ≥ 0.

Similarly CH4 transpiration 𝑇 𝑟(1)CH4
(𝑡𝑗 ) is calculated as

𝑇 𝑟(1)CH4
(𝑡𝑗 ) =

⎧

⎪

⎨

⎪

⎩

0, if ℎ𝑖,𝑗 < 0,

ℎ𝑧(1 − 𝜔)
𝑛
∑

𝑖=0
𝜌𝑖,𝑗 𝐴 𝐜𝑖,𝑗 , if ℎ𝑖,𝑗 ≥ 0.

The total transpirations 𝑇 𝑟(2)CO2
(𝑡0, 𝑡𝑗 ), 𝑇 𝑟(2)CH4

(𝑡0, 𝑡𝑗 ) in the period from 𝑡 = 𝑡0 to 𝑡 = 𝑡𝑗 are calculated using L1-approximation of the
Riemann–Liouville integral as follows:

𝑇 𝑟(2)CO2
(𝑡0, 𝑡𝑗 ) = 1

𝛤 (𝑞 + 1)
𝑗−1
∑

𝑘=𝑘1−𝑞𝑗

𝑏1−𝑞𝑘𝑗

𝑇 𝑟(1)CO2
(𝑡𝑘+1) + 𝑇 𝑟(1)CO2

(𝑡𝑘)

2
,

𝑇 𝑟(2)CH4
(𝑡0, 𝑡𝑗 ) = 1

𝛤 (𝑞 + 1)
𝑗−1
∑

𝑘=𝑘1−𝑞𝑗

𝑏1−𝑞𝑘𝑗

𝑇 𝑟(1)CH4
(𝑡𝑘+1) + 𝑇 𝑟(1)CH4

(𝑡𝑘)

2
.
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